Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases

J Med Chem. 2018 Sep 27;61(18):8088-8103. doi: 10.1021/acs.jmedchem.8b00358. Epub 2018 May 29.

Abstract

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Central Nervous System Diseases / drug therapy*
  • Central Nervous System Diseases / metabolism
  • Central Nervous System Diseases / pathology
  • Humans
  • Kelch-Like ECH-Associated Protein 1 / antagonists & inhibitors*
  • Kelch-Like ECH-Associated Protein 1 / metabolism
  • Molecular Structure
  • NF-E2-Related Factor 2 / antagonists & inhibitors*
  • NF-E2-Related Factor 2 / metabolism
  • Protein Interaction Domains and Motifs / drug effects*
  • Small Molecule Libraries / pharmacology*

Substances

  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Small Molecule Libraries